A transcendental approach to changing metal powder characteristics

Journal: Metal Powder Report

Published: 2008 Volume: 63 Issue: 9

DOI:10.1016/S0026-0657(08)70145-0 ISSN: 0026-0657

Authors: Mahendra Kumar Trivedi, Rama Mohan Tallapragadab

Abstract

It’s not often that Metal Powder Report departs from the path of hard facts into the somewhat ‘mushier’ area of metaphysics, but opportunities crop up. While recognising that science has its fair share of charlatans, one such opportunity was presented by a paper submitted by an Indian researcher in which he details work aimed at probing the effects on powder samples where changes were apparently generated by thought. Some will laugh, others will cry, but perhaps among our readers there are those who might be able to help elucidate further the phenomena described…

Characterization of Physical, Thermal and Spectroscopic Properties of Biofield Treated Ortho-Toluic Acid

Journal: Journal of Heterocyclics PDF

Published: 27-Feb-16 Volume: 1 Issue: 1

Authors: Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak, Ragini Singh, Snehasis Jana *

Abstract

Toluic acid isomers are widely used as a chemical intermediate in manufacturing of dyes, pharmaceuticals, polymer stabilizers, insect repellent and other organic synthesis. The aim of present study was to evaluate the impact of biofield treatment on physical, thermal and spectroscopic properties of ortho isomer of toluic acid (OTA). The OTA sample was divided into two groups, served as control and treated. The treated group received Mr. Trivedi’s biofield treatment. Subsequently, the control and treated samples were evaluated using X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis/ derivative thermogravimetry (TGA/DTG), Fourier transform infrared (FT-IR) and ultraviolet-visible (UV-Vis) spectroscopy. XRD result showed 26.66% decrease in crystallite size in treated OTA sample as compared to control. Furthermore, DSC analysis result showed that latent heat of fusion was considerably reduced by 6.68% in treated OTA sample as compared to control. However, an increase in melting point was observed in treated sample. The melting point of treated OTA sample was found to be 107.96°C as compared to control (105.47°C) sample. Moreover, TGA/ DTG studies showed that Tmax (temperature, at which sample lost its maximum weight) was decreased by 1.21% in treated OTA sample as compared to control. It indicates that vaporisation of treated OTA sample might increase as compared to control. The FT-IR and UV-Vis spectra did not show any significant changes in spectral properties of treated OTA sample as compared to control. These findings suggest that biofield treatment has significantly altered the physical and thermal properties of OTA, which could make it more useful as chemical intermediate.

Thought Intervention through Biofield Changing Metal Powder Characteristics Experiments on Powder Characterisation at a PM Plant

Journal: Proceedings of the 2nd International Conference on Future Control and Automation (ICFCA 2012) PDF

Published: 07-Dec Volume: 2

DOI:10.1007/978-3-642-31003-4_31  ISSN: 1876-1100

Authors: Mahendra Kumar Trivedi, Shrikant Patil, Rama Mohan R. Tallapragada

Abstract

In earlier papers the effect of Mr. Trivedi’s thought intervention through biofield in his physical presence on the atomic, crystalline and particle characteristics of first series of transition metal powders, group four metals and carbon allotropes are discussed. In the present paper we demonstrate this unusual effect on sieve size distribution, apparent density and flow of several metal powders under PM plant conditions.

Evaluation of Physical, Thermal and Spectral Parameters of Biofield Energy Treated Methylsulfonylmethane

Journal: Molecular Pharmaceutics & Organic Process Research PDF

Published: 19-Oct-15 Volume: 3 Issue: 3

DOI:10.4172/2329-9053.1000129 ISSN: 2329-9053

Authors: Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak, Khemraj Bairwa and Snehasis Jana

Abstract

The methylsulfonylmethane (MSM) is an organosulfur compound having sulfonyl functional group. It is occurred naturally in some primitive plants and used in disease related to chronic pain, inflammation, and arthritis. This study was attempted to evaluate the impact of biofield energy treatment on the physical, thermal, and spectral properties of MSM. The study was performed in two groups viz. the control group was remained as untreated, while the treated group was subjected to Mr. Trivedi’s biofield energy treatment. After that, both the control and treated samples were analyzed using surface area analyzer, X-ray diffraction (XRD), thermogravimetric analysisderivative thermogravimetry (TGA-DTG), differential scanning calorimetry (DSC), and Fourier transform infrared (FTIR) spectroscopy. The surface area analysis exhibited a significant decrease in the surface area of treated sample by 22.96% as compared to the control. The XRD analysis showed the significant increase in average crystallite size by 49.20% in the treated sample with respect to the control. The DSC analysis showed the significant increase (67.20%) in latent heat of fusion of treated sample with respect to the control. The TGA analysis showed the onset temperature of thermal degradation at 170°C in the control sample that was slightly decreased to 168.05°C after biofield treatment. Moreover, the Tmax (maximum thermal degradation temperature) was also decreased slightly from 186.66°C (control) to 183.38°C (treated). This indicated the early phase of vaporization in treated sample as compared to the control. The FT-IR spectroscopic study exhibited the alteration in wavenumber of S=O group that suggests the effect of biofield treatment on force constant and bond strength of MSM molecules.

Altogether, the surface area, XRD, thermal analysis and FT-IR spectroscopy suggests that Mr. Trivedi’s biofield energy treatment has the impact on physical, thermal, and spectral properties of MSM.

Physical and Structural Characterization of Biofield Energy Treated Carbazole

Journal: Pharmaceutica Analytica Acta PDF

Published: 23-Oct-15 Volume: 6 Issue: 10

DOI:10.4172/2153-2435.1000435 ISSN: 2153-2435

Authors: Snehasis Jana *, Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak and Gunin Saikia

Abstract

Carbazole is a class of phytochemical associated with cancer prevention. It attracted a significant interest in recent time for their usefulness in synthetic heterocyclic chemistry, analytical chemistry and pharmacology. The aim of the study was to evaluate the impact of biofield energy treatment on carbazole by various analytical methods. The study was performed in two groups i.e. control and treatment. The treatment group was subjected to Mr. Trivedi’s biofield treatment. Subsequently, both the samples were characterized with respect to physical and structural properties using X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Fourier transform infrared (FT-IR), gas chromatography-mass spectrometry (GC-MS), laser particle size analyzer, and surface area analyzer. The XRD study revealed that the crystallite size of treated carbazole was decreased significantly with 37.5% as compared to the control. In addition, the intensity of XRD peaks was slightly decreased as compared to the control. The latent heat of fusion (?H) of treated carbazole was substantially increased by 253.6% as compared to the control. Maximum degradation temperature (Tmax) of treated carbazole was increased by 41.46°C as compared to the control (211.93°C to 253.39°C). FT-IR spectra showed similar stretching frequencies in both control and treated carbazole samples. GC-MS data revealed that isotopic abundance ratio of either 13C/12C or 15N/14N or 2H/1H (PM+1/PM) of treated carbazole was significantly increased up to 278.59%. Particle size analysis showed substantial decrease in average particle size (d50) and d90 of the treated carbazole by 25.24% and 4.31%, respectively as compared to the control. The surface area analysis exhibited an increase in the surface area of treated sample by 4.8% as compared to the control. Overall, the experimental results suggest that biofield energy treatment has significant effect on physical, spectral and thermal properties of carbazole.

Evaluation of the Isotopic Abundance Ratio in Biofield Energy Treated Resorcinol Using Gas Chromatography-Mass Spectrometry Technique

Journal: Pharmaceutica Analytica Acta PDF

Published: Nov 14, 2015 Volume: 7 Issue: 5

DOI:10.4172/2153-2435.1000481 ISSN: 2153-2435

Authors: Mahendra Kumar T, Alice B, Dahryn T, Gopal N, Parthasarathi P and Snehasis J

Abstract

The stable isotope ratio analysis is widely used in several scientific fields such as agricultural, food authenticity, biochemistry, metabolism, medical research, etc. Resorcinol is one of the most versatile chemicals used for the synthesis of several pharmaceuticals, dyes, polymers, organic compounds, etc. The current research work was designed to investigate the impact of the biofield energy treatment on the isotopic abundance ratios of 13C/12C or 2H/1H or 17O/16O (PM+1/PM) and 18O/16O (PM+2/PM) in resorcinol using Gas chromatograph – mass spectrometry (GC-MS) technique. Resorcinol was divided into two parts – one part was control and another part was considered as biofield energy treated sample. The biofield energy treatment was accomplished through unique biofield energy transmission by Mr. Mahendra Kumar Trivedi (also called as The Trivedi Effect®). T1, T2, T3, and T4 were denoted by different time interval analysis of the biofield treated resorcinol in order to understand the influence of the biofield energy treatment on isotopic abundance ratio with respect to the time. The GC-MS spectra of the both control and biofield treated resorcinol exhibited the presence of molecular ion peak [M+] at m/z 110 (calculated 110.04 for C6H6O2) along with major fragmented peaks at m/z 82, 81, 69, 53, and 39. The relative peak intensities of the fragmented ions in biofield treated resorcinol (particularly T2) was significantly changed with respect to the control sample. The stable isotope ratio analysis in resorcinol using GC-MS revealed that the percentage change of the isotopic abundance ratio of PM+1/PM was increased in the biofield treated resorcinol at T1, T2, T3 and T4 by 1.77%, 165.73%, 0.74%, and 6.79%, respectively with respect to the control sample. Consequently, the isotopic abundance ratio of PM+2/PM in the biofield treated resorcinol at T2, T3, and T4 were enhanced by 170.77%, 3.08%, and 12.31%, respectively with respect to the control sample. Briefly, 13C, 2H, 17O contributions from (C6H6O2)+ to m/z 111 and 18O contribution from (C6H6O2)+ to m/z 112 for the biofield treated resorcinol at T2 and T4 were significantly altered as compared to the control sample. For this reasons, biofield treated resorcinol might exhibit altered physicochemical properties like diffusion velocity, mobility and evaporation rate, reaction rate, binding energy, and stability. Biofield treated resorcinol could be valuable in pharmaceutical and chemical industries as intermediates during the preparation of pharmaceuticals and chemical compounds by altering its physicochemical properties, the reaction rate and selectivity, the study of the reaction mechanism and facilitating in designing extremely effective and specific enzyme inhibitors.

Mass Spectrometric Analysis of Isotopic Abundance Ratio in Biofield Energy Treated Thymol

Journal: Frontiers in Applied Chemistry PDF

Published: 07-Oct-15 Volume: 1 Issue: 1

DOI:10.11648/j.fac.20160101.11 ISSN: Not Available

Authors: Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak, Parthasarathi Panda, Snehasis Jana

Abstract

Thymol is a natural monoterpenoid phenol possessing various pharmacological activities such as antimicrobial, antioxidant, etc. The stable isotope ratio analysis has drawn attention in numerous fields such as agricultural, food authenticity, biochemistry, metabolism, medical research, etc. An investigation of the effect of the biofield energy treatment (The Trivedi Effect®) on the isotopic abundance ratios of PM+1/PM and PM+2/PM in thymol using gas chromatography – mass spectrometry was attempted in this study. The sample, thymol was divided into two parts – one part was denoted as control and another part was referred as biofield energy treated sample that was given Mr. Trivedi?s unique biofield energy. T1, T2, T3, and T4 were represented to different time interval analysis of the biofield treated thymol. The GC-MS spectra of the both control and biofield treated thymol indicated the presence of molecular ion peak [M+] at m/z 150 (calculated 150.10 for C10H14O) along with the similar pattern of fragmentation. The relative intensities of the parent molecule and other fragmented ions of the biofield treated thymol were enhanced as compared to the control thymol. The percentage change of the isotopic abundance ratio of PM+1/PM in the biofield treated thymol at T1, T2, T3 and T4 was increased by 3.25, 6.31, 96.75, and 140.25%, respectively as compared to the control thymol. In addition, the percentage change of the isotopic abundance ratio of PM+2/PM was increased in the biofield treated thymol at T1, T2, T3, and T4 by 5.33, 8.00, 101.33, and 140.00%, respectively with respect to the control sample. In summary, 13C, 2H, and 17O contributions from (C10H14O)+ to m/z 151 and 18O contribution from (C10H14O)+ to m/z 152 in the biofield treated thymol were significantly increased gradually with respect to the time and was found that biofield energy treatment has time dependent effect on it. Hence, the biofield energy treated thymol might display altered isotope effects such as physicochemical and thermal properties, binding energy and the reaction kinetics with respect to the control sample. So, biofield energy treated thymol could be advantageous for designing the synthetic scheme for the preparation of pharmaceuticals through its kinetic isotope effects. Besides, biofield treated thymol might be useful to overcome the problems associated with thymol for e.g. pungent flavor, high dose requirement for the activity through understanding its isotope effects and the determination of its pharmacokinetic profile, bioavailability.

Evaluation of Isotopic Abundance Ratio in Biofield Energy Treated Nitrophenol Derivatives Using Gas Chromatography-Mass Spectrometry

Journal: American Journal of Chemical Engineering PDF

Published: 16-May-16 Volume: 4 Issue: 3

DOI:10.11648/j.ajche.20160403.11 ISSN: 2330-8605 (Print) 2330-8613 (Online)

Authors: Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak, Kalyan Kumar Sethi, Snehasis Jana, 

Abstract

Nitrophenols are the synthetic organic chemicals used for the preparation of synthetic intermediates, organophosphorus pesticides, and pharmaceuticals. The objective of the present study was to evaluate the effect of biofield energy treatment on the isotopic abundance ratios of PM+1/PM, and PM+2/PM in o– and m-nitrophenol using the gas chromatography-mass spectrometry. The o– and m-nitrophenol were divided into two parts – one part was control sample, and another part was considered as biofield energy treated sample, which received Mr. Trivedi’s biofield energy treatment (The Trivedi Effect®). The biofield energy treated nitrophenols having analyzed at different time intervals were designated as T1, T2, T3, and T4. The GC-MS analysis of both the control and biofield treated samples indicated the presence of the parent molecular ion peak of o– and m-nitrophenol (C6H5NO3+) at m/z 139 along with major fragmentation peaks at m/z 122, 109, 93, 81, 65, and 39. The relative peak intensities of the fragmented ions in the biofield treated o– and m-nitrophenol were notably changed as compared to the control sample with respect to the time. The isotopic abundance ratio analysis using GC-MS revealed that the isotopic abundance ratio of PM+1/PM in the biofield energy treated o-nitrophenol at T2 and T3 was significantly increased by 14.48 and 86.49%, respectively as compared to the control sample. Consequently, the isotopic abundance ratio of PM+2/PM in the biofield energy treated sample at T2 and T3 was increased by 11.36, and 82.95%, respectively as compared to the control sample. Similarly, in m-nitrophenol, the isotopic abundance ratio of PM+1/PM in the biofield energy treated sample at T1, T3, and T4 was increased by 5.82, 5.09, and 6.40%, respectively as compared to the control sample. Subsequently, the isotopic abundance ratio of PM+2/PM at T1, T2, T3 and T4 in the biofield energy treated m-nitrophenol was increased by 6.33, 3.80, 16.46, and 16.46%, respectively as compared to the control sample. Overall, the isotopic abundance ratios of PM+1/PM(2H/1H or 13C/12C or 15N/14N or 17O/16O), and PM+2/PM(18O/16O) were altered in the biofield energy treated o– and m-nitrophenol as compared to the control increased in most of the cases. The biofield treated o– and m-nitrophenol that have improved isotopic abundance ratios might have altered the physicochemical properties and could be useful in pharmaceutical and chemical industries as an intermediate in the manufacturing of pharmaceuticals and other useful chemicals for the industrial application.

Isotopic Abundance Ratio Analysis of 1,2,3-Trimethoxybenzene (TMB) After Biofield Energy Treatment (The Trivedi Effect®) Using Gas Chromatography-Mass Spectrometry

Journal: American Journal of Applied Chemistry PDF

Published: 15-Jul-16 Volume: 4 Issue: 4

DOI:10.11648/j.ajac.20160404.13 ISSN: 2330-8753 (Print) 2330-8745 (Online)

Authors: Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak, Parthasarathi Panda, Snehasis Jana

Abstract

1,2,3-Trimethoxybenzene (TMB) is one of the most versatile chemical used for the synthesis of several pharmaceuticals, dyes, polymers, organic compounds, etc. The stable isotope ratio analysis has increased attention day-by-days in several fields such as agricultural, food authenticity, biochemistry, medical research, etc. The current study was aimed to evaluate the effect of the biofield energy treatment on the isotopic abundance ratios of 13C/12C or 2H/1H or 17O/16O (PM+1/PM) and 18O/16O (PM+2/PM) in TMB using Gas chromatography – mass spectrometry (GC-MS) technique. TMB was divided into two parts – one part was denoted as control and another part was referred as biofield energy treated sample that was received through Mr. Trivedi?s unique biofield energy (The Trivedi Effect®). The GC-MS of the biofield treated TMB was characterized at different time intervals considered as T1, T2, T3, and T4 to examine the impact of the biofield energy treatment on isotopic abundance ratio with respect to the time. The GC-MS spectra of the both control and biofield treated TMB exhibited the presence of molecular ion peak [M+] at m/z 168 (calculated 168.08 for C9H12O3) along with similar pattern of fragmentation. The relative peak intensities of the fragmented ions in the biofield treated TMB, particularly at T2 and T3 was altered from the control sample. The isotopic abundance ratio analysis in the biofield treated TMB exhibited that the isotopic abundance ratio of PM+1/PM in the biofield treated TMB at T2 and T3 was significantly enhanced by 128.13 and 117.99%, respectively with respect to the control sample. Consequently, the percentage change in isotopic abundance ratio of PM+2/PM was significantly increased in the biofield treated TMB at T2 and T3 by 125.93 and 116.67%, respectively as compared with the control TMB. The isotopic abundance ratios (PM+1/PM and PM+2/PM) in the biofield treated TMB at T1 and T4 was altered with respect to the control TMB. In summary, 13C, 2H, and 17O contributions from (C9H12O3)+ to m/z 169 and 18O contribution from (C9H12O3)+ to m/z 170 for the biofield treated TMB, particularly at T2 and T3 were significantly improved and biofield treated TMB might exhibit changed isotope effects as compared to the control sample. The biofield treated TMB might assist to develop new chemicals and pharmaceuticals through using its kinetic isotope effects like understanding the reaction mechanism, the enzymatic transition state and all aspects of enzyme mechanisms.

Determination of Isotopic Abundance Ratio of Biofield Energy Treated 1,4-Dichlorobenzene Using Gas Chromatography-Mass Spectrometry (GC-MS)

Journal: Modern Chemistry PDF

Published: 15-Jul-16 Volume: 4 Issue: 3

DOI:10.11648/j.mc.20160403.11 ISSN: 2329-1818 (Print) 2329-180X (Online)

Authors: Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak, Kalyan Kumar Sethi, Snehasis Jana.

Abstract

The objective of the current study was to evaluate the effect of biofield energy treatment on the isotopic abundance ratios of PM+1/PM, PM+2/PM, PM+3/PM and PM+4/PM in p-DCB using gas chromatography-mass spectrometry (GC-MS). The p-DCB was divided into two parts – one part was control sample, and another part was considered as the treated sample which was subjected to biofield energy treatment (The Trivedi Effect®). T1, T2, T3, and T4 were referred the biofield treated p-DCB having analyzed at different time intervals. The GC-MS analysis of both the control and biofield treated p-DCB indicated the presence of the parent molecular ion peak at m/z 146 along with four major fragmentation peaks at m/z 111, 75, 55 and 50. The relative peak intensities of the fragmented ions in the biofield treated p-DCB were notably changed as compared to the control sample with respect to the time. The isotopic abundance ratio analysis using GC-MS revealed that the isotopic abundance ratio of PM+1/PM at T1, T2, T3, and T4 (biofield energy treated p-DCB) was significantly increased by 10.87, 83.90, 225.16, and 241.15%, respectively as compared to the control sample. Consequently, the percentage change in the isotopic abundance ratio of PM+2/PM at T1, T2, and T3 (biofield energy treated p-DCB) was enhanced by 4.55, 9.49, and 1.80%, respectively as compared to the control sample. Beside these, another two isotopic molecular ion peaks at m/z 149 and 150 were found in the GS-MS spectra due to arise from the contributions of various combinations of 2H, 13C, and 37Cl. The isotopic abundance ratios of PM+3/PM in biofield energy treated sample at T1, T2, T3, and T4 was significantly increased by 15.14, 82.57, 192.43, and 218.31%, respectively as compared to the control sample. Similarly, the PM+4/PM in biofield energy treated sample at T1, T2, T3, and T4 was significantly increased by 13.80, 86.66, 186.13, and 204.29%, respectively as compared to the control sample. Overall, the isotopic abundance ratios of PM+1/PM(2H/1H or 13C/12C), PM+2/PM(37Cl/35Cl), for PM+3/PM and PM+4/PM (the probable combinations of 2H/1H, 13C/12C, and 37Cl/35Cl) were significantly enhanced in the biofield energy treated p-DCB. The biofield treated p-DCB has shown improved isotopic abundance ratios that might have altered the physicochemical properties, thermal properties and rate of reaction. Biofield treated p-DCB might be useful in pharmaceutical and chemical industries as intermediates during the manufacturing of pharmaceuticals and chemicals by monitoring the rate of chemical reaction.

Gas Chromatography-Mass Spectrometric Analysis of Isotopic Abundance of 13C, 2H, and 18O in Biofield Energy Treated p-tertiary Butylphenol (PTBP)

Journal: American Journal of Chemical Engineering PDF

Published: 15-Jul-16 Volume: 4 Issue: 4

DOI:10.11648/j.ajche.20160404.11 ISSN: 2330-8605 (Print) 2330-8613 (Online)

Authors: Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak, Parthasarathi Panda, Snehasis Jana

Abstract

p–tert-Butyphenol (PTBP) is a phenolic monomer used in the synthesis of numerous industrially useful chemicals. The current research work aimed to evaluate the effect of the biofield energy treatment on the isotopic abundance ratios of PM+1/PM and PM+2/PM in PTBP using gas chromatography – mass spectrometry (GC-MS). The sample, PTBP was distributed into two parts – one part was designated as control PTBP and another part was considered as biofield energy treated PTBP. The biofield energy treatment was achieved through unique biofield energy transmission process by Mr. Trivedi (also known as The Trivedi Effect®). T1, T2, T3, and T4 were indicated to the different time interval analysis of the biofield treated PTBP. The GC-MS spectra of the both control and biofield treated PTBP showed the presence of molecular ion peak [M+] at m/z 150 (calculated 150.10 for C10H14O) along with eight major fragmented peaks at m/z 135, 107, 95, 91, 77, 65, 41, and 39, which might be due to C10H15+, C7H7O+ or C8H11+, C6H7O+, C7H7+, C6H5+, C5H5+, C3H5+, and C3H3••+ ions, respectively. The relative intensities of the parent molecule and other fragmented ions of the biofield treated PTBP were altered as compared to the control PTBP. The percentage in the isotopic abundance ratio of PM+1/PM was enhanced in the biofield treated PTBP at T2, T3 and T4 by 1.60%, 3.57%, and 120.13%, respectively while it was decreased by 4.14% in the treated sample at T1 with respect to the control PTBP. Consequently, the isotopic abundance ratio of PM+2/PM was increased in the biofield treated PTBP at T1, T3, and T4 by 1.28%, 2.56%, and 123.08%, respectively with respect to the control sample. On the other hand, it was reduced in the biofield treated sample at T2 by 1.28% as compared to the control PTBP. Concisely, 13C, 2H, and 17O contributions from (C10H14O)+ to m/z 151 and 18O contribution from (C10H14O)+ to m/z 152 in the biofield treated PTBP were changed with respect to the control sample and was found to have time dependent effect. The biofield energy treated PTBP might display isotope effects such as different physicochemical and thermal properties, rate of the reaction, selectivity and binding energy due to the changed isotopic abundance ratio as compared to the control sample. Biofield treated PTBP could be valuable for the designing new chemicals and pharmaceuticals through using its kinetic isotope effects.

Gas Chromatography-Mass Spectrometry Based Isotopic Abundance Ratio Analysis of Biofield Energy Treated Methyl-2-napthylether (Nerolin)

Journal: American Journal of Physical Chemistry PDF

Published: 13-Jul-16 Volume: 5 Issue: 4

DOI:10.11648/j.ajpc.20160504.11 ISSN: 2327-2430 (Print) 2327-2449 (Online)

Authors: Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak, Kalyan Kumar Sethi, Snehasis Jana

Abstract

Methyl-2-napthylether (nerolin) is an organic compound and has the applications in pharmaceutical, and perfume industry. The stable isotope ratio analysis is increasing importance in various field of scientific research. The objective of the current study was to evaluate the effect of the biofield energy treatment on the isotopic abundance ratios of PM+1/PM (2H/1H or 13C/12C or 17O/16O) and PM+2/PM (18O/16O) in nerolin using the gas chromatography-mass spectrometry (GC-MS). The compound nerolin was divided into two parts – one part was control sample (untreated), and another part was considered as biofield energy treated sample which was received the biofield energy treatment through the unique biofield energy transmission process by Mr. Mahendra Kumar Trivedi (also known as The Trivedi Effect©). The biofield energy treated nerolin was analyzed at different time intervals and were represented as T1, T2, T3, and T4 in order to understand the effect of the biofield energy treatment on isotopic abundance ratio with respect to the time. From the GC-MS spectral analysis, the presence of the molecular ion peak C11H10O+(m/z 158) along with major fragmented peaks C10H7O– (m/z 143), C10H8 (m/z 128), C9H7+ (m/z 115), C7H5+ (m/z 89), C5H3+ (m/z 63), C4H3+(m/z 51), and C3H3+ (m/z 39) were observed in both control and biofield treated samples. Only, the relative peak intensities of the fragmented ions in the biofield treated nerolin was notably changed as compared to the control sample with respect to the time. The isotopic abundance ratio analysis of nerolin using GC-MS revealed that the isotopic abundance ratio of PM+1/PM in the biofield energy treated nerolin at T1, T2, T3, and T4 was increased by 2.38, 138.10, 13.10, and 32.14%, as compared to the control sample. Likewise, the isotopic abundance ratio of PM+2/PM at T1, T2, T3, and T4 was increased by 2.38, 138.10, 13.10, and 32.14%, respectively in the biofield treated nerolin as compared to the control sample. Overall, the isotopic abundance ratios of PM+1/PM (2H/1H or 13C/12C or 17O/16O) and PM+2/PM (18O/16O) were significantly increased in the biofield energy treated sample as compared to the control sample with respect to the time. It is concluded that Mr. Trivedi’s biofield energy treatment has the significant impact on alteration in isotopic abundance of nerolin as compared to the control sample. The biofield treated nerolin might display different altered physicochemical properties and rate of reaction and could be an important intermediate for the production of pharmaceuticals, chemicals, and perfumes in the industry.

Determination of Isotopic Abundance of 13C/12C or 2H/1H and 18O/16O in Biofield Energy Treated 1-Chloro-3-Nitrobenzene (3-CNB) Using Gas Chromatography-Mass Spectrometry

Journal: Science Journal of Analytical Chemistry PDF

Published: 15-Jul-16 Volume: 4 Issue: 4

DOI:10.11648/j.sjac.20160404.11 ISSN: 2376-8045 (Print) 2376-8053 (Online)

Authors: Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak, Parthasarathi Panda, Snehasis Jana

Abstract

1-Chloro-3-nitrobenzene (3-CNB) is an aromatic halo-amine compound used as chemical intermediate for the production of several fine chemicals like pharmaceuticals, dyes, agricultural chemicals, etc. The stable isotope ratio analysis has drawn attention in numerous fields such as agricultural, food authenticity, biochemistry, etc. The objective of the current research was to investigate the impact of the biofield energy treatment on the isotopic abundance ratios of PM+1/PM, PM+2/PM and PM+3/PM in 3-CNB using gas chromatography – mass spectrometry (GC-MS). The sample, 3-CNB was divided into two parts – one part was denoted as control and another part was referred as biofield energy treated sample that was treated with biofield energy (The Trivedi Effect®). T1, T2, T3, and T4 were represented to different time interval analysis of the biofield treated 3-CNB. The GC-MS spectra of the both control and biofield treated 3-CNB indicated the presence of molecular ion peak [M+] at m/z 157 (calculated 156.99 for C6H4ClNO2) along with same pattern of fragmentation. The relative intensities of the parent molecule and other fragmented ions of the biofield treated 3-CNB were improved as compared to the control 3-CNB. The percentage change of the isotopic abundance ratio of PM+1/PM was significantly increased in the biofield treated 3-CNB at T1, T2 and T3 by 11.62, 18.50, and 29.82%, respectively with respect to the control 3-CNB. Accordingly, the isotopic abundance ratio of PM+2/PM in the biofield treated 3-CNB at T2 and T3 was significantly improved by 15.22 and 35.09%, respectively as compared to the control sample. The isotopic abundance ratios of PM+1/PM and PM+2/PM in the biofield treated 3-CNB at T1 and T4 were changed as compared to the control sample. The percentage change of the isotopic abundance ratio of PM+3/PM was enhanced in the biofield treated 3-CNB at T1, T2, T3, and T4 by 4.67, 18.69, 31.31 and 6.08%, respectively as compared to the control 3-CNB. The isotopic abundance ratios of PM+1/PM, PM+2/PM and PM+3/PM in the biofield treated 3-CNB changed with the time. So, the biofield energy treated 3-CNB might exhibit the altered isotope effects such as altered physicochemical and thermal properties, binding energy, and the rate of the chemical reaction as compared to the control sample. The biofield energy treated 3-CNB might assist in designing for the synthesis of pharmaceuticals, agricultural chemicals, dyes, corrosion inhibitors and other several useful industrial chemicals.

Isotopic Abundance Ratio Analysis of Biofield Energy Treated Indole Using Gas Chromatography-Mass Spectrometry

Journal: Science Journal of Chemistry PDF

Published: 13-Jul-16 Volume: 4 Issue: 4

DOI:10.11648/j.sjc.20160404.11 ISSN: 2330-0981 (Print) 2330-099X (Online)

Authors: Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak, Kalyan Kumar Sethi, Snehasis Jana

Abstract

The objective of the current experiment was to evaluate the effect of biofield energy treatment on the isotopic abundance ratio of PM+1/PM (2H/1H or 13C/12C or 15N/14N) in indole using the gas chromatography-mass spectrometry (GC-MS). The sample of organic compound indole was divided into two parts – one part was designated as a control sample (untreated), and another part was considered as biofield energy treated sample, which was subjected to Mr. Trivedi’s biofield energy treatment (The Trivedi Effect®). The biofield energy treated indole sample was analyzed at different time intervals and were symbolized as T1, T2, T3, and T4 to understand the effect of the biofield energy on isotopic abundance ratio with respect to the time. From the GC-MS spectra, the presence of the molecular ion peak C8H7N+ (m/z 117) along with major fragmented peaks C7H6+ (m/z 90), C7H5+ (m/z 89), C5H3+ (m/z 63), C4H2+ (m/z 50), C3H3+ (m/z 39), and C2H4 (m/z 28) were observed in both control and biofield treated samples. Only, the relative peak intensities of the fragmented ions in the biofield treated indole was notably changed as compared to the control sample with respect to the time. The isotopic abundance ratio analysis of indole using GC-MS revealed that the isotopic abundance ratio of PM+1/PM in the biofield energy treated indole at T1 and T2 was significantly decreased by 44.28 and 28.18% as compared to the control sample. On the contrary, the isotopic abundance ratio of PM+1/PM in the biofield energy treated sample at T3 and T4, was significantly increased by 41.22 and 180.88%, respectively as compared to the control sample. Overall, the isotopic abundance ratio of PM+1/PM (2H/1H or13C/12C or 15N/14N) was significantly altered in the biofield energy treated indole as compared to the control with respect to the time. The biofield treated indole with the altered isotopic abundance ratio might have altered the physicochemical properties and rate of reaction. This biofield energy treated indole might be more useful as a chemical intermediate in the production of pharmaceuticals, chemicals, plastics, dyes, and perfumes.

Metabolite Profiling of Withania somnifera Roots Hydroalcoholic Extract Using LC-MS, GC-MS and NMR Spectroscopy

Journal: Chemistry & Biodiversity

Published: 23-07-2016 Volume: 14 Issue: 3

DOI:10.1002/cbdv.201600280 ISSN: Not Available

Authors: Mahendra Kumar Trivedi, Parthasarathi Panda, Kalyan Kumar Sethi, and Snehasis Jana

Abstract

Ashwagandha (Withania somnifera) is a very well-known herbal medicine and it was well studied for its active metabolites throughout the World. Although, nearly 40 withanolides were isolated from W. somnifera root extract, still there is remaining unidenti?ed metabolites due to very low abundance and geographical variation. Advanced separation technology with online identi?cation by mass and nuclear magnetic resonance (NMR) are nowadays used to ?nd out the new compounds in the crude herbal extract. This article described the metabolite pro?ling of ashwagandha root hydroalcoholic extract using ultra-performance liquid chromatography coupled with a positive ion electrospray ionization tandem mass spectrometry through gas chromatography mass spectrometry (GC/MS) and NMR spectroscopy. A total of 43 possible withanolides was identi?ed and proposed their structures based on the mass of molecular and fragment ions. GC/MS and NMR analysis indicated the presence of several known withanolides including withaferin A, withanolide D, withanoside IV or VI, withanolide sulfoxide, etc. To the best of our knowledge, dihydrowithanolide D at m/z 473 (tR7.86 min) and ixocarpalactone A at m/z 505 (tR8.43 min) were ?rst time identi?ed in the ashwagandha root hydroalcoholic extract. The current study that described the identi?cation of withanolides with summarized literature review might be helpful for designing the experiment to identify of the new chemical constituents in Withania species.

Biofield Energy Signals, Energy Transmission and Neutrinos

Journal: American Journal of Modern Physics PDF

Published: 21-Aug-16 Volume: 5 Issue: 6

DOI:10.11648/j.ajmp.20160506.12 ISSN: 2326-8867 (Print) 2326-8891 (Online)

Authors: Mahendra Kumar Trivedi, T. R. Rama Mohan

Abstract

There has been significant data published in peer-reviewed scientific journals about Mr. Mahendra Kumar Trivedi exercising the biofield energy to change the behaviour and characteristics of living organisms including soil, seeds, plants, trees, animals, microbes, and humans, along with non-living materials including metals, ceramics, polymers, chemicals, pharmaceutical compounds and nutraceuticals, etc. This effect of Mr. Trivedi’s biofield energy on living beings and non-living materials is referred to as The Trivedi Effect®. The changes are attributed to changes at the atomic level and the subatomic level. Changes in atomic/molecular weights are postulated to the changes in atomic mass and atomic charge through possible mediation of neutrinos. The recent discovery of neutrino oscillations seems to give credence to our postulates. This paper discusses briefly about the neutrinos and some of Mr. Trivedi’s results and attempts to link these to biofield energy and associated signal transmissions.

A comprehensive physicochemical, thermal, and spectroscopic characterization of zinc (II) chloride using X-ray diffraction, particle size distribution, differential scanning calorimetry, thermogravimetric analysis/differential thermogravimetric analysis, ultraviolet-visible, and Fourier transform-infrared spectroscopy

Journal: International Journal of Pharmaceutical Investigation PDF

Published: 13-Oct-16 Volume: 7 Issue: 1

DOI:10.4103/jphi.JPHI_2_17 ISSN: 2230-973X

Authors: Mahendra Kumar Trivedi, Kalyan Kumar Sethi, Parthasarathi Panda, Snehasis Jana

Abstract

Objective: Zinc chloride is an important inorganic compound used as a source of zinc and has other numerous industrial applications. Unfortunately, it lacks reliable and accurate physicochemical, thermal, and spectral characterization information altogether. Hence, the authors tried to explore in-depth characterization of zinc chloride using the modern analytical technique.
Materials and Methods: The analysis of zinc chloride was performed using powder X-ray diffraction (PXRD), particle size distribution, differential scanning calorimetry (DSC), thermogravimetric analysis/differential thermogravimetric analysis (TGA/DTG), ultraviolet-visible spectroscopy (UV-vis), and Fourier transform-infrared (FT-IR) analytical techniques.
Results: The PXRD patterns showed well-defined, narrow, sharp, and the significant peaks. The crystallite size was found in the range of 14.70–55.40 nm and showed average crystallite size of 41.34 nm. The average particle size was found to be of 1.123 (d10), 3.025 (d50), and 6.712 (d90) ?m and average surface area of 2.71 m2/g. The span and relative span values were 5.849 ?m and 1.93, respectively. The DSC thermogram showed a small endothermic inflation at 308.10°C with the latent heat (?H) of fusion 28.52 J/g. An exothermic reaction was observed at 449.32°C with the ?H of decomposition 66.10 J/g. The TGA revealed two steps of the thermal degradation and lost 8.207 and 89.72% of weight in the first and second step of degradation, respectively. Similarly, the DTG analysis disclosed Tmaxat 508.21°C. The UV-vis spectrum showed absorbance maxima at 197.60 nm (?max), and FT-IR spectrum showed a peak at 511/cm might be due to the Zn–Cl stretching.
Conclusions: These in-depth, comprehensive data would be very much useful in all stages of nutraceuticals/pharmaceuticals formulation research and development and other industrial applications.

In-depth investigation on physicochemical and thermal properties of magnesium (II) gluconate using spectroscopic and thermoanalytical techniques

Journal: Journal of Pharmaceutical Analysis PDF

Published: 01-Nov-16

DOI:10.1016/j.jpha.2017.03.006 ISSN: 2095-1779

Authors: Mahendra Kumar Trivedi, Neena Dixit, Parthasarathi Panda, Kalyan Kumar Sethi, Snehasis Jana

Abstract

Magnesium gluconate is a classical organometallic pharmaceutical compound used for the prevention and treatment of hypomagnesemia as a source of magnesium ion. The present research described the in-depth study on solid state properties viz. physicochemical and thermal properties of magnesium gluconate using sophisticated analytical techniques like PXRD, PSA, FT-IR, UV–Vis spectroscopy, TGA/DTG, and DSC. Magnesium gluconate was found to be crystalline in nature along with the crystallite size ranging from 14.10 to 47.35 nm. The particle size distribution was at d(0.1)=6.552 µm, d(0.5)=38.299 µm, d(0.9)=173.712 µm and D(4,3)=67.122 µm along with the specific surface area of 0.372 m2/g. The wavelength for the maximum absorbance was at 198.0 nm. Magnesium gluconate exhibited 88.51% weight loss with three stages of thermal degradation process up to 895.18 °C from room temperature. The TGA/DTG thermograms of the analyte indicated that magnesium gluconate was thermally stable up to around 165 °C. Consequently, the melting temperature of magnesium gluconate was found to be 169.90 °C along with the enthalpy of fusion of 308.7 J/g. Thus, the authors conclude that the achieved results from this study are very useful in pharmaceutical and nutraceutical industries for the identification, characterization and qualitative analysis of magnesium gluconate for preformulation studies and also for developing magnesium gluconate based novel formulation.

Physicochemical, Thermal and Spectroscopic Characterization of Sodium Selenate Using XRD, PSD, DSC, TGA/DTG, UV-vis, and FT-IR

Journal: Marmara Pharmaceutical Journal PDF

Published: 06.12.2016 Volume: 21 Issue: 2

DOI:10.12991/marupj.300796 ISSN: 1309-0801

Authors: Mahendra Kumar Trivedi, Kalyan Kumar Sethi, Parthasarathi Panda, Snehasis Jana

Abstract

Sodium selenate is an important inorganic compound, but lacks reliable and accurate physico-chemical and spectral characterization information. This article described the in-depth physicochemical, thermal, and spectroscopic characterization of sodium selenate using various analytical techniques. The powder X-ray diffractogram showed well- defined, narrow and sharp peaks revealed that sodium selenate is crystalline in nature. The crystallite size was found to be in the range of 28.75 to 49.97 nm. The average particle size was found to be of 3.93 (d10), 14.44 (d50), and 40.648 (d90) ?m with an average surface area of 0.676 m2/g. The differential scanning calorimetry showed the endothermic inflation at 588.81 °C with the latent heat of fusion 103 J/g. The thermogravimetric analysis revealed two steps of the thermal degradation process. Similarly, the differential thermogravimetric analysis exhibited the major peaks in the thermogram and disclosed Tmax at 852.65 °C. The UV-visible spectrum showed maximum absorbance at 205.1 nm (?max). This indicated sodium selenate thermally more stable in nature. The Fourier transform infrared spectrum showed a peak at 888 cm-1 due to the Se-O stretching. This information would be very much useful in the field of nutraceuticals/ pharmaceuticals and other industries using sodium selenate as an ingredient.

Liquid Chromatography Tandem Mass Spectrometry and Nuclear Magnetic Resonance Spectroscopy of Magnesium (II) Gluconate Solution

Journal: Journal of Solution Chemistry

Published: 10-Jan-17 Volume: 46 Issue: 4

DOI:10.1007/s10953-017-0613-z ISSN: 0095-9782 (Print) 1572-8927 (Online)

Authors: Mahendra Kumar Trivedi, Parthasarathi Panda, Kalyan Kumar Sethi, Snehasis Jana

Abstract

Magnesium gluconate is a classical pharmaceutical compound used as a source of magnesium for the prevention and treatment of hypomagnesemia. To the best of our knowledge, a robust and reliable liquid chromatography tandem mass spectrometry technique has not yet been reported for the qualitative and quantitative analysis of magnesium gluconate. This study describes the method development for the LC–ESI–MS/MS analysis of magnesium gluconate using three different reversed-phase HPLC conditions (Method I–III) with comprehensive fragmentation pattern and the structural characterization by NMR spectroscopy. The LC–MS and NMR data were found in accordance with the structure of magnesium gluconate. When magnesium gluconate was dissolved in the acetonitrile and water–methanol solutions, it exists in situ in three different forms: magnesium gluconate itself, gluconic acid, and magnesium gluconate chelate with gluconic acid by a coordinate covalent bond. Method I exhibited pseudo-molecular ion peaks with more magnesium gluconate chelates with gluconic acid, while method II showed an adduct of magnesium gluconate with the solvent along with the molecular ion peak. There was no pseudo-molecular ion peaks found in method III. Thus, method III was found to be the more accurate, robust and reliable LC–MS method for the qualitative and quantitative analysis, structural characterization, and could also be suitable for the pharmacokinetic study of magnesium gluconate. The detailed fragmentation analysis might be useful for the structural characterization of unknown divalent organometallics.