Biofield Treatment: An Alternative Approach to Combat Multidrug-Resistant Susceptibility Pattern of Raoultella ornithinolytica

Journal: Alternative & Integrative Medicine PDF

Published: 30-Jul-15 Volume: 4 Issue: 3

DOI:10.4172/2327-5162.1000193 ISSN: 2327-5162

Authors: Mahendra Kumar Trivedi , Shrikant Patil, Harish Shettigar, Mayank Gangwar and Snehasis Jana*

Abstract

Raoultella ornithinolytica is belongs to the family of Enterobacteriaceae, a Gram-negative encapsulated aerobic bacillus associated with bacteremia and urinary tract infections. As biofield therapy is increasingly popular in biomedical heath care, so present study aimed to evaluate the impact of Mr. Trivedi’s biofield treatment on antimicrobial sensitivity, minimum inhibitory concentration (MIC), biochemical study, and biotype number of multidrug resistant strain of R. ornithinolytica. Clinical sample of R. ornithinolytica was divided into two groups i.e. control and biofield treated which were analyzed for the above parameters using MicroScan Walk-Away® system on day 10 after treatment. Antimicrobial sensitivity assay results showed a significant increase (60.71%) in sensitivity pattern of antimicrobials i.e. changed from resistant to susceptible while 10.71% of tested antimicrobials changed from intermediate to susceptible as compared to control. MIC results showed a significant decrease in MIC values of 71.88% tested antimicrobials as compared to control.
Biochemical reaction study showed 15.15% alteration in different biochemical such as cetrimide, cephalothin, kanamycin, and ornithine after biofield treatment as compared to control. A significant change in biotype number (7775 4370) was also observed with organism identified as Klebsiella oxytoca after biofield treatment as compared to control (7775 5372). Overall results conclude that biofield treatment could be used as complementary and alternative treatment strategy against multidrug resistant strain of R. ornithinolytica with respect to improve the sensitivity and reduce the MIC values of antimicrobials. Hence, it is assumed that biofield treatment might be a suitable cost effective treatment strategy in near future, which could have therapeutic value in patients suffering from multidrug resistant pathogens.

An Evaluation of Biofield Treatment on Susceptibility Pattern of Multidrug Resistant Stenotrophomonas maltophilia: An Emerging Global Opportunistic Pathogen

Journal: Clinical Microbiology: Open Access PDF

Published: 24-Jul-15 Volume: 4 Issue: 4

DOI:10.4172/2327-5073.1000211 ISSN: 2327-5073

Authors: Mahendra Kumar Trivedi , Shrikant Patil, Harish Shettigar, Mayank Gangwar and Snehasis Jana

Abstract

Stenotrophomonas maltophilia ( S. maltophilia ) is a Gram-negative bacillus, an opportunistic pathogen, particularly among nosocomial infections. Multi-drug resistant strains are associated with very high rate of morbidity and mortality in severely immunocompromised patients. Present study was designed to evaluate the effect of biofield treatment against multidrug resistant S. maltophilia . Clinical sample of S. maltophilia was collected and divided into two groups i.e. control and biofield treated which were analyzed after 10 days with respect to control. The following parameters viz. susceptibility pattern, minimum inhibitory concentration (MIC), biochemical studies and biotype number of both control and treated samples were measured by MicroScan Walk-Away® system. The results showed an overall change of 37.5% in susceptibility pattern and 39.4% in biochemical study while 33.3% changes in MIC values of tested antimicrobials after biofield treatment. Further, the treated group of S. maltophilia has also shown a significant change in biochemical reactions followed by its biotype number as compared to control group. Biochemical reactions of treated group showed negative reaction to acetamide and positive reactions to colistin, glucose, adonitol, melibiose, arabinose, nitrate, oxidation-fermentation, raffinose, rhaminose, sorbitol, sucrose, and Voges-Proskauer as compared with control. The biofield treatment showed an alteration in MIC values of amikacin, amoxicillin/K-clavulanate, chloramphenicol, gatifloxacin, levofloxacin, moxifloxacin, ceftazidime, cefotetan, ticarcillin/K-clavulanate, trimethoprim/sulfamethoxazole. Altogether, data suggest that biofield treatment has significant effect to alter the sensitivity pattern of antimicrobials and biotype number against multidrug resistant strain of S. maltophilia .

Thermal and Physical Properties of Biofield Treated Bile Salt and Proteose Peptone

Journal: Journal of Analytical & Bioanalytical Techniques PDF

Published: 23-Jul-15 Volume: 6 Issue: 4

DOI:10.4172/2155-9872.1000256 ISSN: 2155-9872

Authors: Mahendra Kumar Trivedi, Shrikant Patil, Rakesh K. Mishra and Snehasis Jana*

Abstract

An Impact of Biofield Treatment: Antimycobacterial Susceptibility Potential Using BACTEC 460/MGIT-TB System

Journal: Mycobacterial Diseases PDF

Published: 27-Jul-15 Volume: 5 Issue: 4

DOI:10.4172/2161-1068.1000189 ISSN: 2161-1068

Authors: Mahendra Kumar Trivedi, Shrikant Patil, Harish Shettigar, Sambhu Charan Mondal and Snehasis Jana*

Abstract

The aim was to evaluate the impact of biofield treatment modality on mycobacterial strains in relation to antimycobacterials susceptibility. Mycobacterial sensitivity was analysed using 12 B BACTEC vials on the BACTEC 460 TB machine in 39 lab isolates (sputum samples) from stored stock cultures. Two American Type Culture Collection (ATCC) strains were also used to assess the minimum inhibitory concentration (MIC) of antimicrobials (Mycobacterium smegmatis 14468 and Mycobacterium tuberculosis 25177). Rifampicin, ethambutol and streptomycin in treated samples showed increased susceptibility as 3.33%, 3.33% and 400.6%, respectively, as compared to control in extensive drug resistance (XDR) strains. Pyrazinamide showed 300% susceptibility as compared to control in multidrug resistance (MDR) strains. Isoniazide did not show any improvement of susceptibility pattern against treated either in XDR or MDR strains of Mycobacterium as compared to control. Besides susceptibility, the resistance pattern of treated group was reduced in case of isoniazide (26.7%), rifampicin (27.6%), pyrazinamide (31.4%), ethambutol (33.43%) and streptomycin (41.3%) as compared to the untreated group of XDR strains. The MIC values of few antimicrobials were also altered in the treated group of Mycobacterium smegmatis. There was a significant reduction observed in MIC values of linezolid (8.0 to 2.0 μg/ml) and tobramycin (2.0 to 1.0 μg/ml); however, very slight changes occurred in the remaining antimicrobials of treated samples. There was no change of MIC values in the strain of Mycobacterium tuberculosis after biofield treatment. Biofield treatment effect on Mycobacterium against anti-tubercular drugs might be due to altered ligand-receptor/protein interactions at either enzymatic and/or genetic level with respect to anti-mycobacterium susceptibility and MIC values of antimicrobials.

Phenotypic and Biotypic Characterization of Klebsiella oxytoca: An Impact of Biofield Treatment

Journal: Journal of Microbial & Biochemical Technology PDF

Published: 01-Jul-15 Volume: 7 Issue: 4

DOI:10.4172/1948-5948.1000205 ISSN: 1948-5948

Authors: Mahendra Kumar Trivedi, Shrikant Patil, Harish Shettigar, Khemraj Bairwa and Snehasis Jana*

Abstract

Klebsiella oxytoca (K. oxytoca) is a Gram-negative microbe generally associated with community and hospitalacquired infections. Due to its clinical significance, we evaluated the effect of biofield treatment on phenotype and biotype characteristics of K. oxytoca (ATCC 43165). The study was performed into three groups i.e. C (control), T1 (treatment, revived); and T2 (treatment, lyophilized). Subsequently, groups T1 and T2 were received biofield treatment and control group was remained as untreated. The antimicrobial sensitivity results showed 3.33% and 6.67% alteration in antimicrobials susceptibility in group T1 cells on day 5 and 10, respectively, and 3.33% alteration in antimicrobials susceptibility was observed in group T2 cells on day 10 as compared to control. The sensitivity patterns of cefazolin were changed from resistant (R) to intermediate (I) on day 5, and resistance (R) to susceptible (S) on day 10, in T1 cells of K. oxytoca. The MIC value of cefazolin was decreased by 2-fold in group T1 on day 10 as compared to control. The biofield treated K. oxytoca exhibited the changes in biochemical reactions about 3.03% and 15.15% of total tested biochemicals in group T1 cells on day 5 and 10, respectively as compared to control. The biotype number of K. oxytoca was altered in biofield treated group and organism identified as Raoultella ornithinolytica in T1 on day 10 as compared to control, which is the prominent finding of this study. These changes were found in treated bacteria that might be due to some alteration happened in metabolic/enzymatic pathway and/ or at genetic level of K. oxytoca. Based on these data, it is speculated that biofiled treatment could be an alternative approach that can improve the effectiveness of the existing antimicrobials against the resistant pathogens.

Antibiogram Typing and Biochemical Characterization of Klebsiella pneumoniae after Biofield Treatment

Journal: Journal of Tropical Diseases PDF

Published: 20-Aug-15 Volume: 3 Issue: 4

DOI:10.4172/2329-891X.1000173 ISSN: 2329-891X

Authors: Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Harish Shettigar, Mayank Gangwar and Snehasis Jana*

Abstract

Klebsiella pneumoniae (K. pneumoniae) is a common nosocomial pathogen causing respiratory tract (pneumoniae) and blood stream infections. Multidrug-resistant (MDR) isolates of K. pneumoniae infections are difficult to treat in patients in health care settings. Aim of the present study was to determine the impact of Mr. Trivedi’s biofield treatment on four MDR clinical lab isolates (LS) of K. pneumoniae (LS 2, LS 6, LS 7, and LS 14). Samples were divided into two groups i.e. control and biofield treated. Control and treated groups were analyzed for antimicrobial susceptibility pattern, minimum inhibitory concentration (MIC), biochemical study and biotype number using MicroScan Walk-Away® system. The analysis was done on day 10 after biofield treatment as compared with control group. Antimicrobial sensitivity assay showed that there was 46.42% alteration in sensitivity of tested antimicrobials in treated group of MDR K. pneumonia isolates. MIC results showed an alteration in 30% of tested antimicrobials out of thirty after biofield treatment in clinical isolates of K. pneumoniae. An increase in antimicrobial sensitivity and decrease in MIC value was reported (in LS 6) in case of piperacillin/tazobactam and piperacillin. Biochemical study showed a 15.15% change in biochemical reactions as compared to control. A significant change in biotype numbers were reported in all four clinical isolates of MDR K. pneumoniae after biofield treatment as compared to control group. On the basis of changed biotype number after biofield treatment, new organism was identified as Enterobacter aerogenes in LS 2 and LS 14. These results suggest that biofield treatment has a significant effect on altering the antimicrobial sensitivity, MIC values, biochemical reactions and biotype number of multidrug-resistant isolates of K. pneumoniae.

Effect of Biofield Treatment on Phenotypic and Genotypic Characteristic of Provindencia rettgeri

Journal: Molecular Biology PDF

Published: 27-Aug-15 Volume: 4 Issue: 3

DOI:10.4172/2168-9547.1000129 ISSN: 2168-9547

Authors: Mahendra Kumar Trivedi , Shrikant Patil , Harish Shettigar , Khemraj Bairwa and Snehasis Jana *

Abstract

Providencia rettgeri (P. rettgeri) is a clinically significant Gram-negative bacterium of genus Providencia, and commonly associated with hospital-acquired infection like urinary tract infection (UTI), gastroenteritis, and ocular infections. Present study was designed to evaluate the effect of biofield treatment on P. rettgeri against antimicrobial susceptibility, biochemical reaction pattern, biotype number, and 16S rDNA sequence. The samples of P. rettgeri (ATCC 9250) were divided into three groups: Gr.I (control), Gr.II (treatment, revived), and Gr.III (treatment, lyophilized). The Gr.II and III were treated with Mr. Trivedi’s biofield, and then subsequently characterized for antimicrobial susceptibility, minimum inhibitory concentration (MIC), biochemical reactions, and biotype numbering. The 16S rDNA sequencing was carried out to correlate the phylogenetic relationship of P. rettgeri with other bacterial species. The treated cells of P. rettgeri showed an alteration in susceptibility of about 50% and 53.3% tested antimicrobials of Gr.II on day 5 and 10, respectively; and 53.3% of tested antimicrobials of Gr.III on day 10. MIC results showed a significant decrease in MIC values of 53.1, 56.3, and 56.3% antimicrobials in Gr.II on day 5, Gr.II on day 10, and Gr.III on day 10, respectively, as compared to control. The significant changes in biochemical reactions and biotype numbers were also observed in all the treated groups of P. rettgeri. Based on nucleotides homology and phylogenetic analysis the P. rettgeri was found to be Proteus mirabilis (GenBank Accession Number: AY820623) and nearest homolog species was found to be Proteus vulgaris (Accession No. DQ499636). These findings suggest that biofield treatment can prevent the emergence of absolute resistance of existing antimicrobials to P. rettgeri.

Antimicrobial Susceptibility Pattern, Biochemical Characteristics and Biotyping of Salmonella paratyphi A: An Impact of Biofield Treatment

Journal: Clinical Microbiology: Open Access PDF

Published: 20-Aug-15 Volume: 4 Issue: 4

DOI:10.4172/2327-5073.1000215 ISSN: 2327-5073

Authors: Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak, Harish Shettigar, Sambhu Charan Mondal and Snehasis Jana*

Abstract

Evaluation of Phenotyping and Genotyping Characterization of Serratia marcescens after Biofield Treatment

Journal: Molecular and Genetic Medicine PDF

Published: 31-Aug-15 Volume: 9 Issue: 3

DOI:10.4172/1747-0862.1000179 ISSN: 1747-0862

Authors: Mahendra Kumar Trivedi, Shrikant Patil, Harish Shettigar, Khemraj Bairwa and Snehasis Jana*

Abstract

Antibiogram and Genotypic Analysis using 16S rDNA after Biofield Treatment on Morganella morganii

Journal: Advanced Techniques in Biology & Medicine PDF

Published: 17-Sep-15 Volume: 3 Issue: 3

DOI:10.4172/2379-1764.1000137 ISSN: 2379-1764

Authors: Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak, Mayank Gangwar and Snehasis Jana *

Abstract

Morganella morganii (M. morganii) is one of the important nosocomial pathogen associated with the urinary tract infections and bacteremia. The aim of this study was to evaluate the effect of Mr. Trivedi’s biofield energy treatment on M. morganii in the lyophilized as well as revived state for antimicrobial susceptibility pattern, biochemical characteristics, biotype number and genotype. M. morganii cells were procured from MicroBioLogics Inc., USA in sealed packs bearing the American Type Culture Collection (ATCC 25829) number and stored according to the recommended storage protocols until needed for experiments. M. morganii strain was divided into two groups, Group (Gr.) I: control and Gr. II: treated. Gr. II was further subdivided into two groups, Gr. IIA and Gr. IIB. Gr. IIA was analyzed on day 10, while Gr. IIB was stored and analyzed on day 142 (Study I). After retreatment on day 142, the sample (Study II) was divided into three separate tubes. First, second and third tube was further analyzed on day 5, 10 and 15 respectively. All experimental parameters were studied using the automated MicroScan Walk-Away® system. The 16S rDNA sequencing of lyophilized treated sample was carried out to correlate the phylogenetic relationship of M. morganii with other bacterial species. Antimicrobial susceptibility results showed 32.14% alterations, while minimum inhibitory concentration results showed 18.75% alterations of the tested antimicrobials. Biochemical study also showed altered positive reactions in nitrofurantoin and indole with respect to control. Biotype study showed alteration in Gr. IIB, study II, on day 15 (4005 1446) as compared to the control (4004 1446). 16S rDNA sequencing analysis showed similar results with the identified microbe as M. morganii (GenBank accession number: AB210972) having 80% identity of the gene sequencing data. Total 1507 base nucleotide of 16S rDNA gene sequences were analyzed by multiple alignments, while nearest homolog genus-species of M. morganii was found as Providencia rettgeri (accession number: AM040492). These results suggested that biofield treatment has a significant impact on M. morganii in lyophilized as well as revived state

Bacterial Identification Using 16S rDNA Gene Sequencing and Antibiogram Analysis on Biofield Treated Pseudomonas fluorescens

Journal: Clinical & Medical Biochemistry: Open Access PDF

Published: 04-Sep-15 Volume: 1 Issue: 1

DOI:10.4172/2471-2663.1000101 ISSN: 2471-2663

Authors: Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak, Mayank Gangwar and Snehasis Jana*

Abstract

Biofield therapies have been reported to improve the quality of life as compared to other energy medicine. The aim of the study was to evaluate the impact of Mr. Trivedi’s biofield energy treatment on Pseudomonas fluorescens (P. fluorescens) for antimicrobial sensitivity, minimum inhibitory concentration (MIC), biochemical reactions, and biotype number. P. fluorescens cells were procured from MicroBioLogics Inc., USA in sealed packs bearing the American Type Culture Collection (ATCC 49838) number and divided in control and treated group. The effect was evaluated on day 10, and 159 after biofield treatment in lyophilized state. Further study was performed on day 5, 10, and 15 after retreatment on day 159 in revived state as per study design. All experimental parameters were studied using automated MicroScan Walk-Away® system. The 16S rDNA sequencing was carried out to correlate the phylogenetic relationship of P. fluorescens with other bacterial species after treatment. The results showed improved sensitivities and decreased MIC value of aztreonam, cefepime, moxifloxacin, and tetracycline in revived and lyophilized treated sample with respect to the control. Arginine, cetrimide, kanamycin, and glucose showed altered biochemical reactions after biofield treatment with respect to control. Biotype numbers were altered along with species in lyophilized as well as in revived group. Based on nucleotides homology and phylogenetic analysis using 16S rDNA gene sequencing, treated sample was detected to be Pseudomonas entomophila (GenBank Accession Number: AY907566) with 96% identity of gene sequencing data, which was nearest homolog species to P. fluorescens (Accession No. EF672049). These findings suggest that Mr. Trivedi’s unique biofield treatment has the capability to alter changes in pathogenic P. fluorescens even in the lyophilized storage condition and can be used to modify the sensitivity of microbes against antimicrobials.

Characterization of Phenotype and Genotype of Biofield Treated Enterobacter aerogenes

Journal: Translational Medicine PDF

Published: 12-Sep-15 Volume: 5 Issue: 4

DOI:10.4172/2161-1025.1000155 ISSN: 2161-1025

Authors: Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak, Mayank Gangwar and Snehasis Jana*

Abstract

In vitro Evaluation of Biofield Treatment on Enterobacter cloacae: Impact on Antimicrobial Susceptibility and Biotype

Journal: Bacteriology & Parasitology PDF

Published: 02-Sep-15 Volume: 6 Issue: 5

DOI:10.4172/2155-9597.1000241 ISSN: 2155-9597

Authors: Mahendra Kumar Trivedi, Shrikant Patil, Harish Shettigar, Sambhu Charan Mondal and Snehasis Jana*

Abstract

This research work investigated the influence of biofield treatment on Enterobacter cloacae (ATCC 13047) against antimicrobial susceptibility. Two sets of ATCC samples were taken in this experiment and denoted as A and B. ATCC A sample was revived and divided into two parts Gr. I (control) and Gr. II (revived); likewise, ATCC B was labeled as Gr. III (lyophilized). Group II and III were given with biofield treatment. The control and treatment groups of E. cloacae cells were tested with respect to antimicrobial susceptibility, biochemical reactions pattern and biotype number. The result showed significant decrease in the minimum inhibitory concentration (MIC) value of aztreonam and ceftazidime (≤ 8 μg/mL), as compared to control group (≥ 16 μg/mL). It was observed that 9% reaction was altered in the treated groups with respect to control out of the 33 biochemical reactions. Moreover, biotype number of this organism was substantially changed in group II (7731 7376) and group III (7710 3176) on day 10 as compared to control (7710 3376). The result suggested that biofield treatment had an impact on E. cloacae with respect to antimicrobial susceptibility, alteration of biochemical reactions pattern and biotype.

Antibiogram Pattern of Shigella flexneri: Effect of BioField Treatment

Journal: Air & Water Borne Diseases PDF

Published: 23-Sep-15 Volume: 4 Issue: 2

DOI:10.4172/2167-7719.1000122 ISSN: 2167-7719

Authors: Mahendra Kumar Trivedi , Alice Branton, Dahryn Trivedi, Gopal Nayak, Harish Shettigar, Sambhu Charan Mondal and Snehasis Jana*

Abstract

Effect of Biofield Energy Treatment on Streptococcus group B: A Postpartum Pathogen

Journal: Microbial & Biochemical Technology PDF

Published: 08-Sep-15 Volume: 7 Issue: 5

DOI:10.4172/1948-5948.1000223 ISSN: 1948-5948

Authors: Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak, Harish Shettigar, Sambhu Charan Mondal and Snehasis Jana *

Abstract

Streptococcus agalactiae group B (S. agalactiae gr. B) is widespread in nature mainly causes bacterial septicemia and neonatal meningitis. The current study was attempted to investigate the effect of biofield treatment on S. agalactiae gr. B with respect of antimicrobial sensitivity, biochemical reactions and bio typing. S. agalactiae gr. B strain was used in this experiment bearing the American Type Culture Collection (ATCC 12386) number and stored according to the recommended storage protocol. The revived and lyophilized state of ATCC strains of S. agalactiae gr. B were selected for the study. Gr. I was considered as control. Both revived (Group; Gr. II) and lyophilized (Gr. III) strains of S. agalactiae gr. B were subjected to Mr. Trivedi’s biofield treatment. Gr. II was assessed on day 5 and day 10 while Gr. III on day 10 with respect to the control (Gr. I) using MicroScan Walk-Away® system. Although biofield treatment did not show any change with respect to susceptibility pattern. However the minimum inhibitory concentration of S. agalactiae gr. B showed significant (70.37%) alteration, out of twenty-seven tested antimicrobials, among which in Gr. II i.e. 62.96% on day 5 and 66.67% on day 10 while no alteration was found in lyophilized group (Gr. III) as compared to the control. Moreover, the improvement of MIC value of norfloxacin was observed by two-fold (8 to ≤4 μg/mL) in Gr. II on day 10 after biofield energy treatment as compared to the control. It was observed that overall 48.28% biochemical reactions, out of twenty-nine were altered in Gr. II with respect to the control. Moreover, biotype numbers were changed in Gr. II on day 5 (777777615) and on day 10 (757677405) as compared to the control (237147047). The results suggest that biofield treatment has significant impact on S. agalactiae gr. B in revived treated cells (Gr. II) with respect to MIC values, biochemical reactions pattern and biotype number.

Evaluation of Phenotyping and Genotyping Characteristic of Shigella sonnei after Biofield Treatment

Journal: Biotechnology & Biomaterials PDF

Published: 01-Sep-15 Volume: 5 Issue: 3

DOI:10.4172/2155-952X.1000196 ISSN: 2155-952X

Authors: Mahendra Kumar Trivedi, Shrikant Patil, Harish Shettigar, Khemraj Bairwa and Snehasis Jana *

Abstract

Shigella sonnei (S. sonnei) is a non-motile, rod shape, clinically significant, Gram-negative bacterium. It is commonly associated with dysentery (shigellosis). Recently, resistance to third and fourth generation cephalosporins and fluoroquinolones has been reported in S. sonnei. In the present study, we assessed the effect of biofield treatment on phenotyping and genotyping characteristic of S. sonnei (ATCC 9290). The lyophilized samples of S. sonnei were divided in three groups (G): G-I (control, revived), G-II (treatment, revived), and G-III (treatment, lyophilized). All these groups (control and biofield treated) were analyzed against antimicrobial susceptibility, biochemical reactions, and biotype number. The 16S rDNA sequencing was carried out to establish the phylogenetic relationship of S. sonnei with different bacterial species. The treated cells of S. sonnei exhibited an alteration of 3.33%, 10%, and 23.33% of total 30 tested antimicrobials in susceptibility assay for G-II on day 5 and 10 and G-III on day 10, respectively as compared to control. The treated cells of S. sonnei showed a significant change of about 12.12%, 12.12%, and 57.58% biochemical reactions out of 33 tests in treated groups of G-II on day 5 and 10 and G-III on day 10, respectively. The biotype number was also changed in treated samples of S. sonnei. Based on nucleotide homology sequences and phylogenetic analysis, the nearest homolog species of S. sonnei (GenBank Accession Number: EU009190) was identified as Shigella flexneri (EF643608). These results revealed that biofield treatment can prevent the absolute resistance in microbe against the existing antimicrobials.

Antimicrobial Susceptibility, Biochemical Characterization and Molecular Typing of Biofield Treated Klebsiella pneumoniae

Journal: Journal of Health & Medical Informatics PDF

Published: 25-Sep-15 Volume: 6 Issue: 5

DOI:10.4172/2157-7420.1000206 ISSN: 2157-7420

Authors: Mahendra Kumar Trivedi , Alice Branton , Dahryn Trivedi , Mayank Gangwar and Snehasis Jana

Abstract

Assessment of Antibiogram of Multidrug-Resistant Isolates of Enterobacter aerogenes after Biofield Energy Treatment

Journal: Pharmaceutical Care & Health Systems PDF

Published: 06-Oct-15 Volume: 2 Issue: 5

DOI:10.4172/2376-0419.1000145 ISSN: 2376-0419

Authors: Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Harish Shettigar, Gopal Nayak , Mayank Gangwar and Snehasis Jana

Abstract

Antibiogram Typing of Biofield Treated Multidrug Resistant Strains of Staphylococcus Species

Journal: American Journal of Life Sciences PDF

Published: 12-Oct-15 Volume: 3 Issue: 5

DOI:10.11648/j.ajls.20150305.16 ISSN: 2328-5702

Authors: Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak , Mayank Gangwar, Snehasis Jana

Abstract

Evaluation of Antibiogram, Genotype and Phylogenetic Analysis of Biofield Treated Nocardia otitidis

Journal: Biological Systems: Open Access PDF

Published: 29-Sep-15 Volume: 4 Issue: 2

DOI:10.4172/2329-6577.1000143 ISSN: 2329-6577

Authors: Mahendra Kumar Trivedi, Alice Branton , Dahryn Trivedi, Gopal Nayak , Sambhu Charan Mondal and Snehasis Jana

Abstract